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We propose a bilinear sampling algorithm in the Green's function Monte Carlo 
for expectation values of operators that do not commute with the Hamiltonian 
and for differences between eigenvalues of different Hamiltonians. The integral 
representations of the Schrrdinger equations are transformed into two equa- 
tions whose solution has the form r t(x, y) ~b(Y), where ff~ and ~Pb are the 
wavefunctions for the two related systems and t(x, y) is a kernel chosen to 
couple x and y. The Monte Carlo process, with random walkers on the enlarged 
configuration space x | y, solves these equations by generating densities whose 
asymptotic form is the above bilinear distribution. With such a distribution, 
exact Monte Carlo estimators can be obtained for the expectation values of 
quantum operators and for energy differences. We present results of these 
methods applied to several test problems, including a model integral equation, 
and the hydrogen atom. 

KEY WORDS: Algorithm; bilinear sampling; energy difference; Green's 
function Monte Carlo; quantum expectations; random walk. 

1. I N T R O D U C T I O N  

Q u a n t u m  M o n t e  Ca r lo  ( Q M C )  methods  have found their  way into  
inc reas ing ly  m a n y  a p p l i c a t i o n s  in the s tudy  of  m a n y - b o d y  systems. A m o n g  
them,  the  Green ' s  func t ion  M o n t e  Car lo  ( G F M C )  rl-4~ has  p roved  a v e r y  

power fu l  way  to solve the Schr6d inger  equa t ion  in many  dimensions.  Based  
on a n  i te ra t ive  s tochas t ic  process ,  a sympto t i ca l ly  it yields a M o n t e  C a r l o  
( M C )  r ep resen ta t ion  of the  g round-s t a t e  wavefunct ion of  the system. F o r  
q u a n t u m  ope ra to r s  whose  e igenfunct ions  are  the wavefunctions,  such as  
the H a m i l t o n i a n  itself, on ly  one M C  sample  is needed toge ther  with an  
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analytical trial wavefunction to evaluate exactly their expectation values. 
Therefore, the GFMC method is capable of calculating ground-state 
energies and related quantities in a relatively straightforward fashion. 
Indeed, numerous highly accurate and effective calculations have been 
performed along these lines for many very different systems. 

Due to the random and discrete nature of MC, however, difficulties 
arise in calculating expectations which involve two wavefunctions. One 
obvious example is the calculation of expectation values of quantum 
operators that do not commute with the Hamiltonian. One way of calcu- 
lating expectations with respect to 0 2 is to generate enough independent 
samples from ~k so that, with substantial probability, two lie within range 
of a known Green's function. (s~ For a many-body system, this requires two 
very large samples. Another example is the computation of small energy 
differences between two systems, described by similar Hamiltonians whose 
ground-state eigenvalues differ slightly. The statistical variance associated 
with the mean in energies computed independently can be comparable to 
the energy difference, causing the signal in the calculation of the difference 
to be lost in noise. 

Attempts have been made to overcome these difficulties, leading to 
success in specific cases. But the proposed approaches all present certain 
limitations, making such computations either inexact or much more 
complicated than the energy calculation. Among these, the "extrapolation" 
method (1'6~ is the most straightforward and has been widely applied to 
obtain expectation values for quantum operators that do not commute 
with the Hamiltonian. It gives a biased estimate to the expectation value, 
and the bias is often hard to assess. A trial wavefunction is required which 
accurately describes the desired property of the system. Thus, for systems 
that are not well understood, this method will always be uncertain. Other 
approaches (7-m for expectation values keep track of decedents of walkers 
or employ "side walks." These methods are in principle asymptotically 
exact and they have been successfully applied to certain problems to obtain 
very accurate results for expectation values. But they are often technically 
quite delicate and asymptotically unstable in the sense that increasing the 
length of the side walks so as to decrease the bias leads to a reduction of 
signal-to-noise ratio. In the limit of infinite side walks, the ratio is zero. 
Furthermore, their efficiency or even success largely depends also on the 
quality of the guiding wavefunction, i.e., a priori knowledge of the true 
wavefunction. For the problem of energy differences, it is sometimes 
possible to arrange carefully to correlate the two random walks such that 
the errors in energies would largely cancel. (12~ But unfortunately this is also 
limited in its applicability. 

Underlying the difficulties of these calculations is the fact that they 
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require highly correlated configurations in the MC process representing 
two related functions. We propose in this paper a bilinear sampling algo- 
rithm in the GFMC framework that achieves such a correlation naturally 
within a single random walk. We show that it is possible to apply this to 
calculate expectation values of quantum operators that do not commute 
with the Hamiltonian as well as to compute energy differences. As a new 
and very different approach, it results from the integral representation of 
the Schrrdinger equations used by standard GFMC calculations for 
energies. Instead of sampling a function linear in the unknown wavefunc- 
tions, we transform the Schr6dinger equations into a pair of integral equa- 
tions whose solutions are bilinear in the wavefunctions. The random walk 
based on the new pair of equations directly samples the ground state of 
such solutions, namely, O~0(x) t(x, y) ~tbo(y), where a and b label the two 
related systems and Oa0 and ObQ are correspondingly their ground-state 
wavefunctions. (The labels a and b can be the same, in which case the 
wavefunctions describe the same system.) The function t(x, y) is chosen to 
couple appropriately the configurations x and y. The object of the random 
walk is an ensemble of pairs of configurations (x, y) rather than individual 
configurations x. 

As we shall show in Section 2, the bilinear sampling method yields 
asymptotic distributions of configurations (x, y) which can provide exact 
MC estimators for the function J/ao(X) Obo(X). When a = b, this is simply the 
square of the ground-state wavefunction for a system, and we thus have an 
exact way to compute ground-state expectation values of quantum 
operators. If a and b are different, it permits a direct calculation of the 
energy difference as AE= (~ol  AH I~kbo)/(~a o I Obo), where A H =  H~ - Hb 
is the difference in the Hamiltonians for the two systems. 

As tests, we have applied this new algorithm to a model problem to 
compute various moments and also to the ground states of the hydrogen 
atom and related systems. The former is based on an integral equation 
composed entirely of Gaussians. Because of its simplicity and flexibility, it 
provides a very transparent picture of various aspects of the problem and 
enables us to study the algorithm from many different angles. In the latter, 
we calculate expectation values of various operators for the ground state of 
H and also energy differences between the ground states of H and similar 
systems with different potentials. This provides tests of the necessary 
ingredients for the application of the new algorithm to larger systems of the 
same class. 

In Section 2 we outline the formalism of the bilinear sampling method 
and its numerical implementation. Then the application to two model 
systems is described in Section 3. In Section 4 we give a discussion of the 
method and its further possibilities. Finally, in the Appendix the sampling 
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techniques involved in the hydrogen calculation are developed. These are in 
fact general techniques necessary for a class of such calculations for atoms 
and molecules. 

2. F O R M A L I S M  A N D  THE R A N D O M  W A L K  

As we shall discuss in Section 4, the bilinear sampling approach is by 
no means limited to a certain type of Green's function. But for simplicity 
in presentation, we use the original form of GFMC. (2) In atomic units, the 
Schr6dinger equation for a many-electron system can be written as 

[ -  �89 2 + V(x)] q,(x) = E~0(x) (1) 

where x is a 3M-dimensional vector denoting the coordinates of all M elec- 
trons in 3D space, and the energy is negative for any bound state. We will 
use the Green's function g(x, z) for the operator (-�89 2 -  E) in 3M dimen- 
sions. The energy E is unknown, but it can be either scaled away for 
Coulomb systems ~ or obtained iteratively, which usually converges very 
fast (see Section 3.2.2). We can then transform the Schr6dinger equation 
(1) into the following integral equation: 

~,(x) = ;~ f g(x, z) w(z) q4z) dz (2) 

The Green's function g here has an analytically known form and w = - V. 
Equation (2) has a set of solutions ~ with different eigenvalues 2, the 
lowest of which is 1. With an arbitrary initial function having nonzero 
overlap with the ground-state wavefunetion, this equation can be iterated 
to yield asymptotically the solution corresponding to the lowest 2, or the 
ground state ~0- This forms the basis of the GFMC method. In practice, 
the process is carried out with the wavefunction in each iteration repre- 
sented by a generation of individual configurations, or random walkers. 
The walkers live in configuration space and they move from one point z in 
this space to another x according to the probability distribution function 
g(x, z). The function w in Eq. (2) is treated as a multiplicative weight or as 
a source of branching of walkers. 

We consider two related systems described by Eq. (2): 

Oa(x) = ;~o ~ ga(x, u) wo(u) q,o(u) du (3a) 

~Ob(y) = 2b ; gb(Y, v) wb(v ) ~b(v) dv (3b) 
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where again the subscripts a and b denote the two systems, respectively. In 
order to obtain an asymptotic solution bilinear (rather than linear) in the 
wavefunctions, we use a coupling function t(x, y) and multiply each equa- 
tion in Eqs. (3) by t(x, y) and the wavefunction for the other system to 
arrive at the following pair of equations: 

~a(x) t(x, y) ~b(Y) = 2a f t(x, y) go(x, u) wa(u) ~a(u) t(u, y) Ipb(y ) du (4a) 
t(u, y) 

and 

~ ( x )  t(x, y) Cb(Y) = 2b f 
t ( X, Y) t(x, V) v) wb.(v) ~a(x) t(X, v) Oh(V) av (4b) 

gb(Y, 

These hold for any positive coupling function t in principle and their solu- 
tion now has the form ff~(x)t(x, y)tPb(y). Equations (4)are completely 
defined once the kernel t is chosen. In this paper, we assume that t is 
symmetric in x and y solely for simplicity. Equations (4) can be rewritten 
so that they are more transparent for a random walk interpretation: 

�9 (x, y) = 2~ f F,,(x, y lu, v) N~(u, v) ~(u, v) du dv (5a) 

and 

~(x, y) = 2b f Fb(y, x[ v, u) Nb(v, u) ~(u, v) du dv (5b) 

where r y ) =  ~,,(x)t(x, y)t~b(y ) is the bilinear solution we seek. The 
kernel F~ is a normalized probability distribution function of x and y 
conditional on u and v defined as 

l"~(x, ylu, v) ~: [gs(x, u) t(x, v)] 6(y--v) (6) 

where s is either a or b. The multiplicative factor Ns is 

Ns(u, v) = w~(u) f g,(x, u) t(x, v) dx/t(u, v) (7) 

We note that neither/ 's nor N~ is symmetric in its variables. 
To solve Eqs. (5) by Monte Carlo for the ground states in the bilinear 

form q~o=r Y)~bo(Y), we introduce random walks on the 
enlarged configuration space x | y. In other words, each walker now con- 
sists of two configurations, namely x and y, which sample a joint distribu- 
tion function ~(x, y). The iteration, or the random walk, is carried out by 
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moving walkers according to either one of the two equations in each step. 
The initial distribution of walkers can be arbitrary or generated from a 
Metroplis sampling of �9 with the O's replaced by trial wavefunctions for 
the ground states. The bilinear sampling technique enables us to treat 
explicitly functions bilinear in the wavefunctions and maintain highly 
correlated configurations. But since Eqs. (5) are a direct transformation of 
Eqs. (3), the convergence property of the original linear integral equations 
to the corresponding ground states simply carries through. In the random 
walk process, both equations need to be applied about equally often in 
order to ensure convergence and assure efficiency. In practice, this can be 
accomplished by using the two equations alternately, or randomly with 
equal probability. Once an equation has been selected in a step, the multi- 
plicative factor [either N,,(u, v) or Nb(v, u) as determined by the equation] 
is constructed for each walker. New walkers for the next generation are 
then produced by: (1) choosing a walker (u, v) from the old population 
either with probability proportional to their multiplicative factors or by 
branching (depending on whether the size of the population is fixed or 
not); and (2) sampling a new walker from the parent walker according 
to the kernel F~ for that equation. We note from the form of F~ that in 
fact in step 2 only one new configuration (x or y) is selected and the 
complementary configuration in the old walker is simply carried along. 

Much freedom still remains about the choice of the coupling function 
t. If we set t to a constant, bilinear sampling would reduce to generating 
two independent sets of configurations from two standard GFMC runs, 
from which the overlap would be difficult to extract in high-dimensional 
systems. The kernel t must generate configurations that are close together. 
The requirement of this is very clear in the current problem. When t is the 
same as one of the Green's functions, say, g,, the bilinear sampling method 
yields a density ~0(x) g~(x, y) ~bo(Y). From the original integral equation, 
Eq. (3a), we have 

~ao(Y) ~kbo(Y) = 2~0 f ~kao(x) ga(x, y) t)bo(y) w,~(x) dx (8) 

As mentioned in Section 1, the product on the left-hand side of Eq. (8) 
is essential to the expressions for the expectation values we seek. In 
the asymptotic regime of the MC process, the distribution of pairs of 
configurations represents ~o(X, y) as a sum of delta functions in x and y: 

O~o(X) g~(x, y) ~bo(Y) = ~ 6(x -- xg) 6(y -- Yk) (9) 
k 
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where {xk, Yk} is the collection of these pairs (random walkers) labeled 
by k. This combined with Eq. (8) gives 

q'~o(y) q'bo(y) ~c y~ wo(xO 6 ( y -  y~) (lo) 
k 

In other words, w,(xk) is an MC estimator for ~lao(Yk) ~tbo(Yk). 
With the direct sampling of the product of two wavefunctions given by 

Eq. (10), we can easily obtain the desired expectation values of quantum 
operators exactly. If a=b, the ground-state expectation value of any 
multiplicative quantum operator 0 is 

(0)  -SO~~ O(y)~%(y)dy EkO(yk)wa(x~) (11) 
= I ~'aoCy) ~ooCy) + = Z+ woCx+) 

When a:~b, we wish to calculate the ground-state energy difference 
between two systems a and b described by different but related 
Hamiltonians Ha and Hb. Their ground-state wavefunctions are given by 
~0 and ~b0, which are assumed to be nonorthogonal to each other. If 
Ha- Hb = Va- Vb, since 

AE=~ O=o(Y) HoObo(Y) dy ~ O.o(Y) HbOb~(Y) dy 
r O~o(y) dy ~ r O~o(y) dy 

_~ ~ao(Y)[Ha- Hb] Cbo(Y) (12) 
- S ~ao(Y) Obo(Y) dy 

we have 

~E= Z~ wo(xO[ v~(y~)- vb(y~)] 
Z~ wo(xk) 

(13) 

Of course, in both cases we can use Eq. (3b) in Eq. (8) to obtain 
wb(yk) gb(xk, Yk)/gAxk, Yk) as an estimator for ff~0(x~) ~bo(Xk), which can 
provide expressions similar to Eqs. (11) and (13). They can be combined 
with the equations shown here for better statistics. 

Implicit above is the assumption that it is possible to evaluate N as 
well as to sample/2 This is, of course, not universally valid. Fortunately, 
in the current GFMC approach, the Green's function for ( - �89  2 -  E) 
for any system can be written as a superposition of Gaussians and it is 
straightforward to sample the product of two such functions. The integrals 
in N can also be easily obtained. The assumption is also true for other 
classes of Green's functions for various systems of interest. For discrete 
systems such as certain quantum spin systems, it will be even less 
challenging in principle. 
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3. APPLICATIONS 

Zhang and Kalos 

3.1. A Model Problem 

In this part, we apply the bilinear sampling method to a model 
problem (~4) described by an integral equation of exactly the same form as 
the general many-dimensional equation given by Eq. (2). We shall test the 
capability of the algorithm in calculating expectation values by evaluating 
various moments of the "ground-state" distribution. The labels a and b 
(thus s) may be omitted in this section. Without altering the notation, we 
simply redefine as follows: 

and 

1 g(x, z) = ~ exp[ -- ~(x -- z) z ] 
t~n)-,- 

,•1/2 1 
w(z,=((2~2~-~j exp (  4ct_2 z2) 

where ~ can be any real number greater than 0.5. It can be easily verified 
that under this new definition, Eq. (2) has a set of solutions which are 
products of Gaussians and polynomials. Among them the ground state, the 
solution corresponding to the lowest eigenvalue 2 = 1, is 

~o(X) = exp( - �89 2) 

We choose the coupling function t to be also a Gaussian, 

t(x, y)= e x p [ - f l ( x -  y)2] 

and we shall solve Eqs. (5) by MC for the joint distribution ~0 of the 
ground state. 

With every term in Gaussian form, this problem is easy to study 
analytically from every aspect. The parameters e and fl are completely at 
our disposal and they can be varied to provide insight into the behavior 
of the algorithm under very different conditions of the Green's function 
and coupling. Furthermore, if necessary, the iteration can also be carried 
out directly without doing MC. That is, assuming a general solution 
e x p ( - a ,  x2+ bnxy- c, y2) for the nth iterate of Eqs. (5), we can determine 
a, +1, b, +a, and c, +~ at every stage. This can be used to generate numeri- 
cal trajectories so as to observe the convergence. The product g(x, u) t(x, v) 
in the kernel F(x, Y l u, v) can be easily transformed into a single Gaussian 
in the unknown x by completing the square in the exponents. Not 
surprisingly, then, sampling F amounts to sampling a Gaussian. 
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The MC process generates random walkers {Xk, Yk} representing the 
distribution 0o(X) t(x, y) Oo(Y) for the ground state. Since ( 1 )  

Oo(X) t(x, y) Oo(Y) exp 4 /3-  2 y2 dy oc 002(x) = e x p ( - x  2) 

the MC result is adequate to determine completely the function exp ( -x2 ) .  
For  example, various moments can be computed in a similar fashion as in 
Eq. (11) and compared with the exact results. Also, a histogram can be 
easily made for this function in one or two dimensions. The second 
moment ( x : )  is always computed in our tests. We have carried out 
calculations in nine dimensions and the result is satisfactory. For  the pre- 
sent study, however, one dimension suffices in revealing the characteristics 
of the algorithm. Wide ranges of values have been used for both a and ft. 
Table I presents our results for the second moment in one dimension. 
We see that all the computed answers agree well with the exact result, 
namely 0.5. 

One important  issue is how the algorithm performs when ~ and fl are 
large, since that is the case when both kernels are very sharply peaked. 
That  the Green's function is sharp implies that the step size of the random 
walk is small in configuration space, which more closely resembles the 
situation in higher dimensions resulting from actual many-dimensional 
problems and also the situation in which a QMC is generated by a diffu- 
sion process. The coupling is consequently also very sharp, as indicated in 
Section 2. In fact, in many cases, such as that of the hydrogen atom treated 
below, the coupling is simply the Green's function. Under this circum- 
stance, the probability becomes extremely small to have two independent 
and random configurations appear close in configuration space. Therefore 
the bilinear sampling method must effectively couple two sets of configura- 

Table I. Results of the Bil inear Sampling Method Applied to the 
1D Model  Problem Q 

. fl: Result 

0.6 0.6: 0.5005(5) 1.0: 0.5001(4) 3.0: 0.501(6) 
1.0 0.6: 0.5001(2) 1.0: 0.4998(2) 3.0: 0.503(5) 
3.0 1.0: 0.4999(7) 3.0: 0.501(3) 5.0: 0.501(2) 
5.5 1.0: 0.5003(9) 3.0: 0.500(4) 5.5: 0.502(3) 

10.5 0.6: 0.500(1) 3.0: 0.501(3) 10.0: 0.504(5) 
i i 

a Shown is the second moment (x 2) from the sampled distribution for ~2(x). The 
exact answer is 0.5. The parameters ~ and/3 give the sharpness of the Gaussian 
kernels g (the Green's function) and t (the coupling), respectively. The statistical 
errors in the results are in the last digits and are indicated in prentheses. 
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tions without distorting the distribution. It is reasonable to expect 
less efficiency as c~ and /3 increase, but the sampled distribution must 
nevertheless be correct. From Table I, we see that this is indeed the case. 

We keep a constant number of walkers in our simulations. This results 
in a bias, since generations with high multiplicity contribute less than they 
should and conversely. Branching can be introduced instead of strict pop- 
ulation control to avoid this. It is also possible to correct for such a bias 
by carrying weights. (is) The sum of multiplicative factors over all walkers 
in a generation labeled by n, ~ ,  indicates the total number of walkers the 
next generation should include. Thus, with the number of walkers fixed at 
L for every generation, each generation can be assigned a weight formed by 
a product of ,/V/L from a certain number of previous generations, i.e., 

- -  m ff~n- I-II= 1 ~n--l/L" The number of previous generations to be included, m, 
can be tuned so that it is large enough to remove the bias and yet not 
introduce excessive fluctuation. For this model problem, with a fairly small 
number of walkers (usually 1000), it requires tess than ten generations to 
correct for the bias. It is observed that, without the correction, the bias 
effect is often quite significant. As the kernels become sharper, the bias 
becomes more and more serious. Moreover, it does not seem to always 
exhibit a clear 1/L behavior as in many G F M C  calculations. The popula- 
tion control bias can be attributed to fluctuation of the multiplicative func- 
tion N. In bilinear sampling, due to the extra function t inserted to couple 
two points, it is not implausible to have relative large variation in N. For 
instance, in this model problem, N(u, v) oc exp[/~2(u- v)2/(ot +/3)] w(u). In 
these calculations caution must be exercised to ensure that the result is 
unbiased, in other words, robust against population size. 

We also mention in passing that even though Eqs. (4) and therefore 
Eqs. (5) are true for any nonzero t, they are not necessarily always well 
behaved in an MC calculation. To illustrate this, recall that the variance (16) 
of the total weights for a generation in the random walk is given by 
S N(u, v) 20(u, v)du dr. But when the coupling function t is much sharper 
than the Green's function g, this expression diverges, which implies that the 
MC sampling would not actually converge to a definite answer. For the 
model problem, it is possible to determine the range of /3 for each 
where infinite variance can be expected. We have verified that when the 
parameters are given in this range, the MC answer can disagree with the 
exact one significantly. The above analysis has employed no knowledge of 
the specific form of the kernels and thus is general to bilinear sampling. For 
the purpose of computing the expectation values of quantum operators, 
however, it is always possible to avoid a kernel t in that regime. So this 
should not pose any problem. As an additional probe of the diverging 
weights, we can monitor the fluctuation of population sizes in a calculation. 
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3.2.  T h e  H y d r o g e n  A t o m  

As another  test case, we use the algorithm to study the ground state 
of the hydrogen atom. In the first part, expectation values of operators with 
respect to the ground state are computed. In the second, we study similar 
systems with different potentials and evaluate the energy difference between 
the ground states of the new and original systems. It is assumed the systems 
are nonrelativistic with the nucleus fixed. Except for technical details, 
implementation of the new algorithm to address these problems directly 
follows the formalism developed in Section 2. Based on Eq. (8), the natural 
choice of t is t =ga ,  where go is the Green's function for the hydrogen 
atom. 

In general, the Green's function g for an M-electron system as defined 
in Section 2 can be written in an integral representation which is a super- 
position of Gaussians with different widths. There also exists an analytical 
expression for g in terms of polynomials and modified Bessel functions of 
the second kind, so that it can be conveniently evaluated. Using these 
expressions, the integral in N can be easily computed for any M and there 
exists an efficient way to sample x from the product of functions in the 
same class, g~(x, u) gb(x, v) (cf. Appendix). 

3 .2 .1 .  G r o u n d - S t a t e  E x p e c t a t i o n  V a l u e s .  Similarly to Section 
3.1, we can sample the square of the ground-state wavefunction and com- 
pute directly within a single run expectation values of multiplicative 
operators. The sampling techniques are only a special case of that discussed 
in the Appendix. In Table II, we show computed expectation values of the 
potential energy 11, the radial distance [xl, x 2, and the square of the third 
component of the electron coordinate x32, together with the exact answers. \ 

The number of walkers is typically 3000 and the bias is not noticeable. 
Because of the simplicity of the sampling process and the direct sampling 

Table II. Results of the New Algorithm Applied to the Ground State of 
the Hydrogen Atom Together with the Exact answers ~ 

,, = 

Item < V> <(x2)1/2> < x2> < x~ > 

Bilinear - 1.001 (2) 1.500(3) 3.000(9) 1.002(3) 
Exact - 1.0 1.5 3.0 1.0 

a The items are the expectation values of the potential, the radial distance, the second 
moment, and the z component of the second moment. All quantities are in atomic 
units. The statistical errors in the MC results are in the last digits and are indicated 
in parentheses. 
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of the product of wavefunctions, the code is fast and the algorithm quite 
efficient. We see that the agreement between the bilinear sampling and the 
exact results is again excellent. 

3.2.2. Energy D i f f e r e n c e  Ca lcu la t ions .  In this part, we 
describe tests of the capability of the bilinear sampling method to calculate 
energy differences by considering systems similar to the hydrogen atom but 
with different potentials. We will employ bilinear sampling to compute 
the energy differences between the ground states of such systems and 
the hydrogen atom. The Green's functions corresponding to the two 
Hamiltonians belong to the same class discussed in the Appendix, only 
with a possible difference between multiplicative factors in their arguments 
that is a function of the energy. The difference in the potential terms causes 
Wa to differ from Wb in Eqs. (4). 

The simplest way to obtain such a system is to add a perturbation 
term to the original hydrogen Hamiltonian, i.e., H b = H ~ -  3'H', where H'  
is a multiplicative operator and ;~ is a small coefficient. From Eq. (13), we 
can compute AE/3' as a function of 3', where AE is the energy difference 
between the ground states of the two systems. When ~ = 0, this in fact is 
exactly the bilinear approach of calculating the expectation value of H' in 
the ground state of Ha. Therefore, in a sense, all results in Section 3.2.1 can 
be viewed as special cases of these calculations. As 3' is increased, the result 
should deviate from the ground-state expectation of H' and should always 
give the exact energy difference divided by 3'. From the MC point of view, 
it implies the ability to compute the exact energy difference for all ranges 
of the parameter ~. Moreover, the effect of the small perturbation is 
generated with a small fluctuation. In fact, the statistical error may 
decrease with 3'. 

We consider a perturbation H ' =  1/[xl. This is just the original 
Coulomb potential and the energy difference is trivially obtained analyti- 
cally. In Fig. 1, we plot the computed AE/3' for some values of 3' from 
bilinear sampling and compare them with the exact result. The ground- 
state energy of H is -0.5 in atomic units. We see that the agreement is 
excellent. For instance, in the case of 3' = 0.003 the bilinear sampling 
method easily yields an energy difference of 0.0030036(12), which would be 
extremely challenging, if possible at all, for an approach by independent 
MC calculations. 

We next study a system described by the Hamiltonian Hb for the 
so-called Hulth6n potential 

exp(--p Ixl) 
VHuI( IX l )=  - Vo 

1 -  exp(-p ]x[) 



Bi l inear  Quantum Monte Carlo 527 

co 
O 

O 

C~ 
O 

O 
O 

0.00 

EXACT RESULT I 

I E- i r 

0.02 0.04 0.06 0.08 0.10 

PERTURBATION STRENGTH 7 

Fig. 1. The "effective" energy difference AE/7 between the original and perturbed systems 
for a perturbation yV(x) to the ground state of the hydrogen atom. Results of the bilinear 
sampling method are shown with statistical fluctuations and are compared with the exact 
result. V(x) is the potential energy operator. The bilinear calculations were done with the 
arbitrarily chosen values ~ = 0.003, 0.005, 0.01, 0.05, 0.1. The first-order perturbation result 
is 1. Atomic units are used. 

where Vo and p are parameters. This system can be solved exactly {1~ and 
its ground-state energy is given by Ebo= --(2Vo/p--p)2/8 (pz< 2Vo)" Let 
V o = p. Then this potential behaves like the Coulomb potential at small 
values of [xf and approaches zero exponentially at large distances. By 
varying the parameter p, we can control how similar this system is to the 
hydrogen atom and the energy difference between their ground states can 
be calculated from the bilinear sampling method and compared with the 
exact results. In Table III, we show the computed and analytical results 
for AE for some values of p. Again extremely accurate values are easily 
obtained with bilinear sampling for small as well as large energy dif- 
ferences. (Each number corresponds to roughly 1 h on an IBM RS6000 
workstation.) 

As mentioned above, the argument of the Green's functions scales with 
the ground-state energies and has the form g(ks Ix-y[), where g is the 
Green's function for the operator ( - V Z +  1) and ks= (2 IEs01) 1/2 (s= a, b). 
This does not pose any difficulty because we can obtain iteratively and very 
quickly the correct values for the two energies. In fact, it is observed that, 
quite generally, the final result of a standard GFMC calculation in this 
approach is rather insensitive to the initial input of the energy. We have 
tested the effect of iterations from a very poor starting value of the energy 
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Table III. Energy Differences AE=Ebo-Eao from Bilinear 
Sampling Between the Ground States of the Hydrogen 
Atom and a Similar System Described by the Hulth6n 

Potential,  Compared wi th  Exact Results ~ 

p Exact Bilinear-exact 

0.001 0.00049987500 - 0.00000000004(8) 
0.0125 0.00623047 0.00000000( 1 ) 
0.03333 0.01652778 0.00000007(6) 
0.08333 0.0407986 - 0.0000001 (4) 
0.4 0.180000 0.000004(4) 

"The  Hulth6n potential is given by VHuI ( Ix l )= - -pexp ( - -p  Ixl)/ 
[1-exp(-p lx l )] ,  whereas the Coulomb potential in H is 
V ( I x I )  = - 1 / I x l .  Atomic units are used. The ground-state energy of 
H is Eao = - 0 . 5  and Ebo is higher. The second column is the exact 
result for ,dE, while the last column gives the error (bilinear-exact) 
in the bilinear result. The statistical errors from MC are again in the 
last digits and are shown in parentheses in the last column. 
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Fig. 2. Convergence of iterations with the input of the energy Eb0 of the perturbed system in 
the energy difference calculations for H. The perturbation is again -7/Ixl and large perturba- 
tions (), = 0.1 and 0.5) are chosen in order to show a visible convergence process. Values of 
AE/7 are plotted as a function of the number of iterations. The exact results are given as 
straight lines. In both calculations an initial value 0 is assumed for the energy difference. In 
one iteration, they both give `dE/7=0.9995(9), equivalent to the first-order perturbation 
result. The calculation with ~, = 0.1 (lower curve) requires only one more iteration to converge 
to the exact value 1.05, while that with 7 = 0.5 converges in four more iterations to the eorrect 
answer ,dE/), = 1.25. 
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Ebo in our calculations with the 1/[xl perturbation, and, indeed, the 
convergence is very fast. For example, if we use E=0 as initial value for both 
Green's functions, then within one run, we can obtain the first-order 
correction to Ebo. Even for large 7 the effect of the uncertainty of an initial 
energy guess becomes unnoticeable in the final answer in one to a few more 
iterations. In Fig. 2, we illustrate this by plotting AE/7 as a function of 
iterations for two large values of the coefficient 7 (0.1 and 0.5). 

The number of walkers in these calculations is typically 2000 and we 
correct for the bias with several previous generations as described in 
Section 3.1. We alternate the two equations in (5). In the bias correction, 
we calculate the averages of ~ separately for even and odd l and normalize 
each accordingly such that these multiplicity factors are kept around unity. 

4. D I S C U S S I O N  

It is interesting to note that the manipulation of the original integral 
equation (3a) to arrive at Eq. (4a) is very similar to an importance 
sampling transformation. (1'4~ In fact, if the coupling kernel t(x, z) is the 
same as ga(x, z), we can use as importance function the correct form, 
namely, the unknown wavefunction Oa0 in its integral representation as 
given by Eq. (3a). Since the MC process in effect does the integral in this 
importance function, we only use the integrand and also drop the potential 
term wa and Eq. (4a) ensues. This also suggests that the algorithm should 
be rather efficient and explains to some degree why no trial wavefunction 
is needed in the method. 

As a straightforward method that depends little on a priori knowledge, 
bilinear sampling should be useful to different quantum problems as the 
GFMC approach is employed more and more to understand various 
many-body systems. For example, it seems possible to study with this 
method ground-state properties of certain quantum spin systems/m A 
generalized version of the ideas developed here with quadrilinear sampling 
provides the possibility of calculating transition moments between two 
quantum states, as opposed to a method using side walks. (1~ 

By sampling the product of wavefunctions, the bilinear approach is 
more promising than dealing with two independent sets of configura- 
tions (5'1~ from two GFMC calculations. We need to study more the 
behavior of the method as g and t become very sharp so as to give a 
general prescription for avoiding the large biases or fluctuations we have 
seen in that limit. In many-electron systems, we inevitably will encounter 
the "sign" problem in quantum MC. (3' 13) We have not yet formulated a 
bilinear sampling algorithm mechanism that also addresses that problem in 
an exact way. But it is possible to use bilinear sampling within the fixed- 

822/70/3-4--2 
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node(a, 18) approximation. With this, the method is dearly generalizable to 
many-electron systems in which the random walk is either generated by a 
diffusion approximation or by domain Green's function methods. In either 
case, there are three possible choices for t(x, y). We can use g(x, y) as in 
the present work, ignoring the fact that a small number of estimates will be 
negative [because w(x)= - V(x) is negative]. We can couple the two con- 
figurations x and y using the kernel by which new points are generated 
(itself a Green's function either in a short-time approximation or over some 
finite domain). Finally, it is possible, in principle, to couple the walkers by 
the full Green's function (unknown in advance, but generated by walks 
that would go from x to y) and modify the coupling recursively using local 
Green's functions. Investigation of these alternatives will be the subject of 
future research. 

The bilinear sampling algorithm derives directly from the integral 
representation of the many-body Schr6dinger equation of the system. It 
appears to be quite natural for the problems involving functions quadratic 
in ground-state wavefunctions, and for the calculation of energy differences. 

APPENDIX. SAMPLING THE PRODUCT OF TWO 
GREEN'S FUNCTIONS 

In this Appendix, we complete the technical part associated with the 
sampling of the kernel F, in Eq. (6) and the evaluation of the multiplicative 
factor N in Eq. (7). These are general to Green's functions for the operator 
( - � 89  IEI) with any number of particles. As discussed in Section 3.2.2, 
we can assume the energy is known. 

Again let M be the number of particles in the system we treat. Then 
the Green's function (2)' 2 as defined above is given by 

(k2 a--,2f  ( k2jx-zl2  
g(x'z)=\-4-~] ~o t-aM/2exp --t 4t j d t  (A1) 

where k = (2 lEt )~/2. As already mentioned, g also has a form which can be 
used to evaluate the Green's function: 

~ k 2 ~ a g/2 
g(x, z)=  \~-~] K3M/2_I(k [x-z l ) / (k  I x - z [ )  an/2-x (A2) 

where Km is the modified Bessel function of the second kind. In the bilinear 
sampling process we need to evaluate Ns and sample F s. With t(x, y)= 
ga(X, y ) ,  both Ns and Fs involve the product of two Green's functions of 

2 See also ref. 19, where the basic idea of bilinear sampling is discussed briefly. 
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the same class. It is necessary to sample such products as well as evaluate 
integrals based on them. 

We consider the product of two Green's functions with ka and kb. Let 
4= (k~-k~)/2 (t>0) and a =  (k~+k~)/2. From Eq. (A1), by completing 
squares and changing variables, it is straightforward to obtain the 
following expression: 

fo; gb(x, y) ga(x, z) ~: T(xl y, z, zx, %) exp ( -  ~q) 
--p 

xp--3M/2exp (--ap (Y--Z)2~ dq -~p -/ dp (A3) 

The new pair of variables p and q are 

p = z l  +'C 2 

q = Z l  --'g2 

and T(x[ y, z, zl, %) is a normalized probability distribution function of x 
conditional on z~.2 (or p and q), y, and z: 

, / z i+%'~  3M/2 [ z i + z 2 (  Y % + ~ I / 2  ] 
T(xly, z, zt, r2)=~,4~%) exp 4zlz2 x -  %+z, ./ J (A4) 

Now we describe the actual sampling and integrating of this product 
of Green's functions gb(x, y)ga(x, Z) given the positions of the parent 
walkers y and z. Since integration over x in Eq. (A3) simply removes T, we 
have 

1 f gb(X, y) g,~(X, Z) dx oc ~ [k•M-2ga(y, z)--k3bM--2gb(y, Z)] (A5) 

As a special case, in the limit k,, = k b ,  i.e., when the two Green's functions 
correspond to the same system, the above expression reduces to 

1 3M-4 3M/2- 1 f g,,(x, y) ga(x, z) dx oc ~ ka ga (y, z) (A6) 

where the superscript on g indicates that the Green's function is for 
3M/2- 1 dimensions rather than 3M/2 for the original functions. To 
sample an x from a probability distribution function proportional to 
gb(X, y) g,,(X, Z), we note that for any known pair o f y  and z, Eq. (A3) can 
be written as 

gb(X, y) ga(x, Z) W. f f  T(x[ p, q) Q(ql p) P(p) @ dq (A7) 
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where T is the same as in Eq. (A4) with the variables changed from zl, z 2 
to p and q. Here Q is a normalized probability distribution function of q 
conditional on p as follows: 

Q(qlp)={~oeXp(-~q)/[exp(r162 if otherwiselql<~P (A8) 

P is a positive function of p on (0, oe) which therefore can be viewed as a 
probability density function 

P(p) oc 1-exp(-2~P)2~p p--3M/Z+l exp I - k i p  (Y-z)Z]4p J (A9) 

Thus, to obtain x according to the probability density given by Eq. (A3) 
or Eq. (A7), we need to sample a p from Eq. (A9), then a q on [ - p ,  p] 
according to (A8), and finally sample the Gaussian in Eq. (A4). Sampling 
of (A9) is elementary (16) and can be accomplished by, e.g., sampling the 
exponential distribution in p in the last term and then doing rejections. 
The case ka = kb is once again straightforward, since Q becomes uniform 
on [ - p ,  p ]  and the first term in P(p) is simply 1. We also mention that 
analogous (though possibly less elegant) methods will apply for any 
coupling kernel that can be written in the form 

, ( x , y ) = f S h ( t ) e x p  I (x~4tY)2]dt 
for h(t) >>, O. 
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